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Composites made with conducting or insulating discs (right cylinders) in a cementitious matrix
were tested by AC impedance spectroscopy. The dual-arc (conducting discs) and single-arc
(insulating discs) behaviors were analyzed for conductivity vs. the volume fraction of discs. The
resulting mixing laws are in excellent agreement with equations derived from existing mixing
laws for the semi-dilute regime, once suitably modified for differences in shape (right cylinders
vs. oblate spheroids) and alignment (random vs. aligned). Deviations from random dispersion
were readily detected by conductivities in x, y, and z directions, suggesting that AC-IS is
sensitive to any anisotropy of discs orientation in such composites. These results are
completely general, with potential application for composites involving disc-shaped inclusions
(e.g., flakes or cracks). C© 2006 Springer Science + Business Media, Inc.

1. Introduction
An understanding of the electrical structure-property re-
lationships in fiber-reinforced composites (FRCs) is es-
sential for controlling their electronic applications and to
enable various applications, e.g., non-destructive evalua-
tion (NDE) and structural health monitoring. Chung and
coworkers have demonstrated the use of DC electrical
conductivity to monitor strain and damage accumulation
in FRCs under static and dynamic loading [1, 2]. This
is an important first step in the development of “smart
composites” with self-monitoring capabilities. A number
of systems have been investigated, e.g., polymer-matrix
and ceramic-matrix composites, including cement-matrix
FRCs. Other work has demonstrated that AC-impedance
spectroscopy (AC-IS) can similarly be employed for NDE
of FRCs, including ceramic-matrix [3, 4], cement-matrix
[5–9] and even polymer-matrix [10] composites. It was
also shown that AC-IS can monitor damage processes in
discontinuous FRCs [11, 12].

To fully correlate the changes in DC and AC electrical
properties with loading and/or damage accumulation, it is
important to understand the role played by cracks in the
overall electrical properties. Willis employed variational
principles to predict bounds and estimates for the overall
thermal conductivity of a body containing aligned ellip-
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soidal inclusions, with penny-shaped cracks as one of the
limiting cases [13]. Benveniste and Miloh used a gener-
alized self-consistent scheme to find an exact solution for
the effective thermal conductivity of cracked bodies with
random or oriented elliptical cracks [14, 15]. Nan and
Birringer used an effective-medium approach to deter-
mine the thermal conductivity of particulate composites
with imperfect interfacial thermal contact [16]. Of partic-
ular interest is the numerical method of Kushch and San-
gani, who used multipole expansion to compute the con-
ductivity of composites with perfectly conducting oblate
spheroidal discs (“anti-cracks”) and perfectly insulating
oblate spheroidal discs (penny-shaped cracks) [17]. We
will henceforth refer to these simulations as the KS model.
To the best of the authors’ knowledge, these numerical
calculations have yet to be confirmed experimentally.

The present work develops the mixing laws for the elec-
trical conductivity of composites with randomly oriented
cracks, based on an “intrinsic conductivity” approach (see
below) in tandem with the KS model [17]. For experimen-
tal confirmation, right cylindrical discs were used to simu-
late cracks in composites (in place of the oblate spheroidal
discs used in the KS work). Modifications were made to
the KS equations to account for the different shape (right
cylinders vs. oblate spheroids) and also to account for
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differences in alignment (aligned in the KS work vs. ran-
dom in the present study). It should be stressed that our
results should be quite general, and can be extended to
other physical phenomena involving aligned or randomly
oriented flat objects (discs, flakes, cracks, pores, etc.), in-
cluding thermal conductivity, diffusivity, dielectric con-
stant, magnetic permeability, etc. [17].

Cement-matrix composites were selected as the model
system in the present work for several reasons. Cement-
matrix composites are relatively easy to fabricate and
harden relatively quickly. An added benefit is the ability
to achieve a high viscosity in the pre-cast condition just
prior to set, to prevent the gravitational settling of more
dense inclusions like steel. This was demonstrated in prior
work involving cement composites with steel ball bearing
inclusions. Homogeneous specimens were successfully
prepared with no evidence of gravitational settling [18].
Also, when saturated cement paste has a moderately high
electrical conductivity and a high pH. The high pH en-
vironment allows passive oxides to form on conducting
inclusions (e.g., steel).

The system is also unique due to the absence of a per-
colation threshold for electrical conductivity. Campo et
al. [18] reported the absence of a percolation threshold
with loading levels up to 42% volume fraction of steel
ball bearings in the cement matrix. They reasoned that
the absence of a percolation threshold was due to insulat-
ing cement particles (median size ≈ 10 µm) completely
coating the much larger ball bearings, preventing direct
contact between them. The same behavior is expected in
the present work. It must be stressed that such behavior
is limited to inclusions whose smallest dimension is large
compared to the median cement particle size (∼10 µm).
For inclusions with one or more dimensions comparable
to or less than the median cement particle size (e.g., fibers
with diameter ≤10 µm) percolation thresholds are rou-
tinely observed [19]. According to Charlaix et al. [20],
the percolation threshold of flat discs should be in the
range 0.15 ≤ ε ≤ 0.3, where ε = nr3 is the dimensionless
number density of discs, based upon the number of discs
per unit volume (n) and their radius (r). The largest values
of ε used in the present work were 0.22 and 0.25 for the
conducting and insulating discs, respectively, at a volume
fraction of 0.1. The use of the cement matrix is there-
fore adventitious to study electrical mixing law behavior
without the onset of percolation.

2. Experimental procedures
A series of composites were fabricated with either con-
ducting (copper, 19 mm diameter) or insulating (poly-
mer, 18.6 mm diameter) right cylindrical discs. The as-
pect ratios (diameter divided by thickness) were 13.7 and
15.4 for the conducting and insulating discs, respectively.
Type I ordinary Portland cement (OPC) was hand-mixed
with water at a water-to-cement ratio of 0.4 by weight
for approximately 2 min. The mixture was then mixed
at medium speed in a commercial blender for 3 min to

Figure 1 Experimental setup for AC-IS measurements of cement-matrix
composites with either conducting or insulating right cylindrical discs.

achieve homogeneity. It was allowed to set for approx-
imately 2 h to achieve the proper viscosity to prevent
settling of the discs. The discs were mixed in thoroughly
by hand and the composite paste was cast into cubic poly-
carbonate molds (86 × 86 × 86 mm). Samples were de-
molded after 24 h and stored at 100% relative humidity
during curing for 7 days. For each batch of cement paste,
a plain cement paste sample was also made. This was
used for matrix-conductivity normalization purposes (see
below). The processing route was identical to that of the
composite samples outlined above.

A Solartron 1260 impedance/gain phase analyzer with
Z-60 data collection software (Schlumberger, Houston,
TX) was employed for the AC-IS measurements. Two-
point AC-IS measurements were made at 7 days along the
x, y and z directions using 1 M NaCl aqueous electrodes
and stainless steel electrodes (55 × 90 × 0.5 mm). Mea-
surements were made quickly, within 5–10 min in each
direction, to limit any interdiffusion between the measure-
ment solutions and the pore network of the composites.
The experimental setup is shown in Fig. 1. The excitation
amplitude was 1 V over the frequency range from 0.1 Hz
to 11 MHz, with data collected at 20 steps per decade of
frequency.

3. Experimental results and analysis
The measured response of AC-IS, both magnitude and
phase angle, is typically represented in a Nyquist
plot (negative imaginary impedance, -Im(Z), vs. real
impedance, Re(Z)) with frequency increasing from right
to left. The plot contains semicircles or arcs whose diame-
ters correspond to the resistances of the different electrical
components in the composite microstructure.

Fig. 2 shows a typical Nyquist plot for ordinary Portland
cement (OPC) with 0.35 vol% steel fibers (2 mm length
× 30 µm diameter) at 3 days of hydration [9]. The four-
point DC resistance values, corrected for the different
inter-electrode spacings in DC and AC measurements, are
also shown. The electrode (rightmost) arc in each case is
the result of a high impedance response from the external
electrodes used to take measurements. The arc (for the
plain OPC) or arcs (for the composite) to the left of the
electrode arc, or the so-called bulk arc(s), are attributable
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Figure 2 Typical Nyquist plots at 3 days of hydration for w/c = 0.4 OPC
with and without 0.35 vol% steel fibers [9]. Four-point DC resistance values
are shown on the Re(Z) axis for comparison. Darkened points indicate log
(base 10) of frequency (Hz).

to the composite itself. The intersection of the electrode
arc and the bulk arc at RDC is in good agreement with
the four-point DC measurement, as shown in each case.
With a small addition of some steel fibers, the intersection
and the DC resistance are relatively unaffected compared
to the plain OPC. This signifies that the DC resistance
is approximately that of the matrix alone and that the
inclusions behave as if insulating at low frequency or DC.
However, the bulk arc of the composite is now subdivided
into two separate arcs, intersecting the Re(Z) axis at a
lower resistance value, marked Rcusp. This indicates that
at AC frequencies, the composite becomes much more
conductive than the matrix by itself, i.e., the inclusions
now behave as if conducting.

The above dual-arc behavior (as opposed to the single
bulk arc of the cement matrix alone) has been observed
only in composites with moderately conducting matrices
and highly conducting inclusions, separated by a high
impedance interface or coating [7]. Where these require-
ments are satisfied, such an interface may arise due to the
formation of an ionic double layer (carbon fibers/OPC), a
passive oxide film (steel fibers/OPC), or a Schottky barrier
at the junction of two dissimilar semiconductors.

Once the above requirements are satisfied, the dual-arc
behavior can be described by a frequency-switchable coat-
ing (FSC) model [7, 8]. At low frequency or DC, the high
impedance interface remains intact so the inclusions ac-
tually behave as if insulating, leading to a bulk/interface
cusp (and RDC) that approximates that of the plain ma-
trix. But as the frequency increases, displacement currents
through the high impedance interface cause the coating
to short out. Now the inclusions behave as if conducting,
leading to a significantly decreased Rcusp value compared
to RDC. A comprehensive equivalent circuit model de-
scribing the impedance response of composites with in-
sulating or conducting particles or fibers is presented else-
where [21]. It is the presence of this high impedance coat-
ing that necessitates the use of AC conductivity to investi-
gate the electrical behavior of composites with conducting

inclusions. If such coating is not present (as is the case for
composites with insulating inclusions or with conducting
inclusions but no high impedance layer formation), DC
conductivity is sufficient to characterize the behavior. In
the present work, these two values—the cusp resistance
(Rcusp) and the DC resistance (RDC)—were used to investi-
gate electrical mixing laws for right cylindrical discs (rep-
resenting cracks or flake-like inclusions) in composites.

Fig. 3a–d show some typical Nyquist plots for actual
composites at the lowest (φ = 0.0075) and highest (φ =
0.1) disc volume fractions used in the experiments. The
Nyquist plots for the x and z directions are shown for
composites with conducting discs and insulating discs,
respectively. (A rationale for the different responses in x
vs. z directions of measurement is given below.)

Composites with conducting discs exhibit dual arc
behavior, as expected, given the high impedance layer
formed on the copper discs. However, there is a major
convolution of the electrode and the bulk arcs, unlike the
case of the fiber-reinforced composite (see Fig. 2), where
the bulk-interface cusp can be readily identified. This arc
convolution is due to so few interfaces being present in
the disc-cement system vs. the numerous interfaces in the
fiber-reinforced composite. Given such arc convolution,
it is impossible to accurately extract the bulk-interface
cusp (corresponding to the RDC of the composite) from
the Nyquist plot of the composite. Nevertheless, the cusp
resistance (Rcusp) at higher frequencies can be combined
with the RDC of the plain paste sample to derive a matrix-
normalized conductivity when the discs are conducting
(see below).

Prior experience indicates that Rcusp and RDC (see Fig. 2)
are each reproducible to within ±5 percent, largely deter-
mined by uncertainties in electrode geometry (e.g., inter-
electrode spacing). These uncertainties are reflected in the
error bars of Fig. 4a and b.

Composites with insulating discs (Fig. 3a and 3b), on
the other hand, exhibit only a single bulk arc similar to
the plain paste sample, but shifted to higher resistance
values with increased disc loading. As with conducting
disc specimens, it was necessary to employ the DC con-
ductivity of a parallel paste-only (matrix-only) specimen
for normalization purposes (see below).

Assuming identical, average surroundings for each in-
clusion, effective medium theories have been developed
to predict the effective conductivity of composites based
on the geometry of a given inclusion. In the dilute limit,
where the volume fraction of inclusions is sufficiently
small to prevent particle-particle interactions, the effective
conductivity of a composite (σ c) containing inclusions of
conductivity, σ p, suspended in a matrix of conductivity,
σ m, is described by [23]:

σc

σm
= 1 + [σ ]� φ + 0φ2, � ≡ σp

σm
(1)

where σ c/σ m is the matrix-normalized conductivity of the
composite and φ is the volume fraction of the inclusions.
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Figure 3 Typical Nyquist plots for the actual physical simulations in the present work, showing (a) the z-direction of the composite with insulating discs
at φ = 0.0075 (b) the z-direction of the composite with insulating discs at φ = 0.1 (c) the x-direction of the composite with conducting discs at φ = 0.0075
(d) the x-direction of the composite with conducting discs at φ = 0.1, all of which are shown in comparison with the associated plain paste samples.

The higher order terms in φ are neglected for the dilute sit-
uation but will become significant outside the dilute limit.
The normalized conductivity depends upon the contrast
of particle vs. matrix conductivities (� = σ p/σ m) and is
related to the AC-IS-derived parameters through:

σc

σm
= RDC,m

Rcusp
= 1 + [σ ]∞ φ (2)

for conducting inclusions (� = ∞) and

σc

σm
= RDC,m

RDC,c
= 1 + [σ ]0 φ (3)

for insulating inclusions (� = 0). RDC,m and RDC,c are the
AC-IS-derived RDC values for the matrix and the com-
posite, respectively. The coefficient of φ in (1) is referred
to as the “intrinsic conductivity.” For example, perfectly
conducting (� = ∞) spheres have [σ ]∞ = 3, compared
to [σ ]0 = –3/2 for perfectly insulating (� = 0) spheres
in the dilute limit. Outside the dilute limit, the effective
conductivity of spherical particle composites is best de-
scribed by the Meredith and Tobias model [18, 22]. Dou-
glas and Garboczi calculated and compiled the intrinsic
conductivities for inclusions of various shapes, including
ellipsoids of revolution and right cylinders in the limiting

cases when they are highly insulating (� = 0) and highly
conducting (� = ∞) [23]. They demonstrated the impor-
tant role of aspect ratio. For example, long right cylinders
(fibers) can have extremely large intrinsic conductivities
when conducting (e.g., see [24]), whereas flat right cylin-
ders (discs) can have significant intrinsic conductivities
whether conducting or insulating.

Beyond the intrinsic regime, only the numerical calcu-
lations of Kushch and Sangani have dealt with flat objects
(e.g., cracks or flake-like inclusions) [17]. They consid-
ered an array of oblate spheroidal discs with their axes of
rotation aligned parallel to the z-axis, but otherwise posi-
tioned randomly in the x-y plane. We will refer to these as
z-axis aligned specimens. By curve-fitting their results vs.
the number density of discs (defined above), they arrived
at expressions which were valid up to ε = 1.0 for both
conducting discs:

σx

σm
= σy

σm
= 1 + 4.71ε + 6.5ε2,

σz

σm
= 1 (4)

and insulating discs:

σz

σm
= 1 − 0.863[1 − exp(−2.7ε)],

σx

σm
= σy

σm
= 1 (5)
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Figure 4 (σ i/σm−1) vs. volume fraction for (a) random insulating discs and (b) random conducting discs. The modified Kushch and Sangani equations for
random orientation of right cylindrical discs are also shown. The variations of the individual data for x, y, and z directions before averaging are shown as well
as the average value (open circle). The error bars were calculated based on the expected 5% experimental errors from geometry of the AC-IS measurements.

where the x, y and z subscripts denote the effective com-
posite conductivities in each direction of measurement.
The dimensionless number density (ε = nr3) can be re-
lated to the disc volume fraction φ through

ε = 3

2π

(
r

t

)
φ (6)

where r is the disc radius and t is its thickness. Compar-
ison of the results show that, at a fixed volume fraction,
perfectly conducting discs create a much larger change
in the composite conductivity than do perfectly insulating
discs. Nevertheless, flat insulating objects are the most ef-
fective geometry of inclusions to reduce the conductivity
of a composite [23].

Based on Douglas and Garboczi’s work on electric and
magnetic polarizabilities of oblate spheroidal particles
[23], equations similar to (1) can be derived in terms of
ε for oblate spheroidal discs and right cylindrical discs
embedded in an isotropic matrix as a function of disc ori-
entation. The first order coefficient in ε can be converted
across disc shape and/or orientation by some common
factors depending on whether the discs are conducting or
insulating (See Table I and details in Appendix). However,
these equations hold true only in the dilute limit, which
might not be the case for some volume fractions used in
our experiment. The KS equations, on the other hand,
extend beyond the dilute limit into the semi-dilute regime
where the influence of inclusions on each other is taken
into account. They are applicable up to ε = 1.0 which
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T AB L E I Normalized conductivity of oblate spheroidal discs and right cylindrical discs in the dilute limit [23]

Oblate spheroidal discs

Orientation Conducting Insulating

z-axis aligned (axis of rotation || z-axis)
σx

σm
= σy

σm
= 1 + 16

3
ε

σz

σm
= 1 − 8

3
ε

σz

σm
= 1

σx

σm
= σy

σm
= 1

Random
σi

σm
= 1 + 32

9
ε i = x, y, z

σi

σm
= 1 − 8

9
ε i = x, y, z

Right cylindrical discs

Orientation Conducting Insulating

z-axis aligned (axis of rotation || z-axis)
σx

σm
= σy

σm
= 1 + 16

3
ε

σz

σm
= 1 − 4π

3
ε

σz

σm
= 1

σx

σm
= σy

σm
= 1

Random
σi

σm
= 1 + 32

9
ε i = x, y, z

σi

σm
= 1 − 4π

9
ε i = x, y, z

corresponds to φ ≈ 0.41 and 0.46 for our insulating and
conducting right cylindrical discs, respectively. These
are well beyond the maximum volume fraction used
in the present work. These expressions, when properly
modified, should therefore be valid for describing the
electrical mixing laws in our model composites.

Fig. 4a and b show the experimental variations of
(σ i/σ m−1) vs. volume fraction for either type of the discs
in the present work. The normalized conductivity in the i-
direction σ i/σ m, was calculated from (2) or (3), depending
on the disc type, using the AC-IS parameters measured in
that particular direction. They were plotted in comparison
with the KS equations, modified for the different shape
and orientation of the inclusions (labeled “K&Smod”), as
described in the Appendix. To account for right cylindri-
cal discs in random orientation (as opposed to the z-axis
alignment in the KS work), the coefficients of εn in the
polynomial fits (n = 1 to 4) for the original KS data were
corrected by a factor of π /6 for the insulating case and
2/3 for the conducting case (see Appendix for details). Be-
sides the individual values of (σ i/σ m−1) for the x, y and z
directions, the average values of (σ i/σ m−1) over all three
directions are also shown. Due to the inability to achieve a
perfectly random orientation of discs, the individual data
for the three directions display some deviations from the
expected trend. For both types of the discs, the z direction
appears to exhibit lower conductivity than expected. Av-
eraging over x, y and z directions, however, corrects for
any unintentional alignment. As can be seen in Fig. 4a and
4b, the average values agree well with the appropriately
modified KS equations. The resulting relationships (see
the Appendix) can therefore be used to describe the elec-
trical mixing law behavior in composites with random flat
objects (e.g., cracks or flake-like inclusions).

The considerable variations in conductivity among the
three directions as detected in Fig. 4 show that AC-IS is

also sensitive to the anisotropy of inclusion distribution.
This points to the potential use of these AC-IS-derived
conductivities to characterize the overall orientation of
the discs and thus the anisotropy of the composite struc-
ture. To explore the overall disc orientation, the effective
intrinsic conductivity in each of the three directions [σ ]�(i)

was calculated from (2) or (3) and then normalized by the
sum of that same quantity over all three directions. These
fractional x, y and z components of the intrinsic conductiv-
ity give the electrical contribution from the inclusions in
each particular direction, from which information about
the overall orientation of discs can be obtained. This is
shown in the triangular plots of Fig. 5a and b for the two
types of discs at various volume fractions. Due to there
being very few interfaces in the samples with the lowest
volume fractions of discs (φ = 0.0075 and 0.015), only
a miniscule variation from the plain paste conductivity is
detected, leading to very large uncertainties in the intrin-
sic conductivity calculation. Therefore, only results from
samples with larger volume fractions, i.e., with signifi-
cant changes in conductivity vs. plain paste, are presented
in Fig. 5. The coordinates in Fig. 5 represent ([σ ]�(x)/�,
[σ ]�(y)/�, [σ ]�(z)/�) where � = [σ ]�(x) + [σ ]�(y) +
[σ ]�(z), therefore [σ ]�(x)/� +[σ ]�(y)/� + [σ ]�(z)/� will
always be equal to 1. The open square represents the the-
oretical prediction for perfectly random (1/3, 1/3, 1/3)
orientation of the discs. The arrows show the expected
deviation from the perfectly isotropic case as a result of
z-axis alignment (with the axis of rotation of the discs
parallel to the z-axis of the sample), based on the intrinsic
conductivity approach.

The experimental results show a shift in the direction
of the z-vertex in Fig. 5a (insulating discs) and away
from the z-vertex in Fig. 5b (conducting discs). Since
Fig. 5a is essentially displaying negative intrinsic con-
ductivities (insulating discs), it follows that the z-axis
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Figure 5 Triangular representation of the fractional x, y and z components
of the intrinsic conductivity for (a) random insulating discs and (b) random
conducting discs at various volume fractions. The open square at the center
of the diagram represents theoretical prediction for perfectly random ori-
entation of the discs, with arrows showing predicted shifts due to z-axis
alignment of discs.

conductivities are lower than for a perfectly random distri-
bution, in agreement with Fig. 4a. Similarly, since Fig. 5b
is displaying positive intrinsic conductivities (conduct-
ing discs), it follows that the z-axis conductivities are
lower than for a perfectly random distribution, in agree-
ment with Fig. 4b. Both observations would be consistent
with a greater than random fraction of discs being z-axis
aligned. In the insulating state, current flow would tend
to be reduced in the z-direction vs. the x and y direc-
tions. In the conducting state, current flow would tend
to be enhanced in the x and y directions, with a nec-
essary reduction in the z-direction. The reason for the
detected z-axis alignment in both sets of experimental
specimens is unclear. Nevertheless, the results demon-
strate that AC-IS, combined with the intrinsic conductivity
approach, is sensitive to any preferred alignment of disc-
shaped inclusions such as cracks, flakes, etc., in composite
materials.

4. Conclusions
Electrical mixing laws for composites containing insulat-
ing or conducting right cylindrical discs have been devel-

oped based on the intrinsic conductivity approach and the
numerical calculations of Kushch and Sangani [17]. The
averaged matrix-normalized conductivity of the model
composites, obtained from AC-IS parameters, was found
to be in good agreement with the KS equations, modified
for the different disc shape (right cylinders in the present
work vs. oblate spheroids in the KS work) and orientation
(random vs. z-axis aligned). The modified equations can
be used to describe the composite electrical behavior in
the semi-dilute regime, i.e., up to ε = nr3=1.0, where n
is the number of discs of radius, r, per unit volume. Fur-
thermore, directional variations of the normalized con-
ductivities showed that AC-IS is sensitive to the overall
orientation of disc-shaped inclusions and thus the overall
anisotropy of the composite. The fractional components
of the intrinsic conductivity, when plotted in a triangular
representation, are quite sensitive to any preferred align-
ment of disc-shaped inclusions. It should be possible to
apply the analysis and equations developed to character-
ize the amount and distribution of disc-shaped inclusions,
e.g., flakes or cracks, in composites. The ability to monitor
the development and orientation of cracks during loading
may be one useful application.
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Appendix
The equations developed by Kushch and Sangani [17] for
the case of z-axis aligned oblate spheroidal discs can be
extended to the case of random right cylindrical discs, as
in the present work.

Table I shows the normalized conductivity of oblate
spheroidal discs and right cylindrical discs in the dilute
limit based on Douglas and Garboczi’s work on polariz-
abilities [23]. The non-dimensional number density ε is
related to the volume fraction φ through Equation 6 for
oblate spheroidal discs and through:

ε = 1

π

(
r

t

)
φ (A1)

for right cylindrical discs, where r and t are the radius and
thickness of the discs, respectively. Significant changes
in conductivity are observed in the direction parallel to
the plane of the conducting discs and perpendicular to the
plane of the insulating discs.Note that for the conduct-
ing case, both oblate spheroids and right cylindrical discs
yield the same behavior in terms of ε. For the insulating
case, however, a factor of π /2 is involved to convert the
coefficient of ε from oblate spheroids to right cylindrical
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discs. Moreover, due to two electrical polarization com-
ponents parallel to the plane of the discs in the conducting
case, a factor of 2/3 is needed to convert from aligned to
random orientation, for both oblate spheroids and right
cylindrical discs. For the insulating case, only a factor of
1/3 is needed for the same purpose, since only one mag-
netic polarization component perpendicular to the plane
of the discs is involved in conduction.

The modified KS equations plotted in Fig. 4 are:

σi

σm
= 1 − 1.40ε + 2.48ε2 − 2.60ε3 + 1.11ε4 (A2)

σi

σm
= 1 + 3.56ε + 3.91ε2 − 2.07ε3 + 2.31ε4 (A3)

where i = x, y, z for composites containing insulating and
conducting right cylindrical discs, respectively. These are
obtained from polynomial fits for Kushch and Sangani’s
original data [17]:

σi

σm
= 1 − 8

3
ε + 4.74ε2 − 4.97ε3 + 2.11ε4 (A4)

σi

σm
= 1 + 16

3
ε + 5.86ε2 − 3.10ε3 + 3.47ε4 (A5)

modified by a factor of π /6 for the insulating case and
2/3 for the conducting case, respectively. Note that the
original data were fitted such that the resulting equations
will reduce to those derived for the intrinsic limit (Table I)
when ε is very small.

References
1. D . D. L . C H U N G , Mater. Sci. Eng. R 22 1998 57.
2. D . D . L . C H U N G , in “Composite Materials for Electronic Func-

tions,” edited by M. Magini and F. H. Wohlbier, (Trans Tech Publica-
tions, Switzerland, 2000) Vol. 12 p. 58.

3. C .–A. WA N G, Y. H UA N G, Z . X I E , Y. L I and Z . Z H A N G ,
J. Am. Ceram. Soc. 83 (2000) 2689.

4. R . G E R H A R D T , Ceram. Eng. Sci. Proc. 15 (1994) 1174.
5. P. G U, Z . X U, P. X I E and J . J . B E AU D O I N , Cem. Concr. Res.

23 (1993) 675.
6. S . J . F O R D, J . D . S H A N E and T. O. M A S O N , ibid. 28 (1998)

1737.
7. J . M. TO R R E N T S, T. O . M A S O N and E. J . G A R B O C Z I ,

Cem. Concr. Res. 30 (2000) 585.
8. J . M. TO R R E N T S, T. O . M A S O N, A. P E L E D, S . P. S H A H

and E. J . G A R B O C Z I , J. Mater. Sci. 36 (2001) 4003.
9. T. O . M A S O N, M. A. C A M P O, A. D. H I X S O N, and L . Y.

W O O , Cem. Concr. Comp. 24 (2002) 457.
10. D . K AU S H I K, M. N. A L I A S and R. B ROW N , Corrosion 47

1991 859.
11. J . M. TO R R E N T S, T. C . E A S L E Y, K. T. FA B E R, T. O .

M A S O N and S . P. S H A H , J. Am. Ceram. Soc. 84 (2001) 740.
12. A . P E L E D, J . M. TO R R E N T S, T. O . M A S O N, S . P. S H A H

and E. J . G A R B O C Z I , ACI Mat. J. 98 (2001) 313.
13. J . R . W I L L I S , J. Mech. Phys. Solids. 25 (1977) 185.
14. T. M I L O H and Y. B E N V E N I S T E , J. Appl. Phys. 63, (1988) 789.
15. Y. B E N V E N I S T E and T. M A L O H , ibid. 66 (1989) 176.
16. C . -W. NA N, R . B I R R I N G E R, D. R . C L A R K E and H.

G L E I T E R , J. Appl. Phys. 81, (1997) 6692.
17. V. I . K U S H C H and A. S . S A N G A N I , Proc. R. Soc. Lond. A. 456

(2000) 683.
18. M. A. C A M P O, L . Y. W O O, T. O . M A S O N and E. J .

G A R B O C Z I , J. Electroceram. 9 (2002) 49.
19. P. –W. C H E N and D. D. L . C H U N G , J. Electron. Mater. 24

(1995) 47.
20. E . C H A R L A I X, E . G U YO N and N. R I V I E R , Solid State Com-

mun. 50 1984 999.
21. L . Y. W O O, S . WA N S O M, A. D. H I X S O N, M. A. C A M P O

and T. O. M A S O N , J. Mater. Sci. 38 (2003) 2265.
22. R . E . M E R E D I T H and C. W. TO B I A S , in “Advances in Electro-

chemistry and Electrochemical Engineering,” edited by C. W. Tobias,
(Interscience, New York, 1962) Vol. 2. p. 15.

23. J . F. D O U G L A S and E . J . G A R B O C Z I , in “Advances in Chem-
ical Physics,” edited by I. Prigogine and S. A. Rice, (John Wiley &
Sons, 1995) Vol. XCI p. 85.

24. A . D . H I X S O N, L . Y. W O O, M. A. C A M P O, T. O . M A S O N

and E. J . G A R B O C Z I , J. Electroceram 7 2001 189.

Received 19 March 2004
and accepted 22 June 2005

1096


